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against the particle volume fraction 4 for Gz of 10 and 1.5 
increases sharply up to volume fraction of 5% beyond which 
the increase is very slow. For a Gz of 15 and a suspension of 
volume fraction of 5% the overall heat transfer coefficient is 
1.6 times that for the aqueous NaCI. 

The ratio of Nusselt number offlowing suspensions, Nu,, to 
that of aqueous NaCI, Nu, is plotted against the particle 
volume fraction Cp in Fig. 4. It increases linearly with # sharply 
up to 5% beyond which the increase is very slow. Number of 
heat transfer units, NTU, is plotted against 4 with Gz as 
parameter in Fig. S(a). At a given Gz, greater particle volume 
fractions yield larger values of NTU which means, as is 
apparent in equation (6), larger values of heat exchanger 
effectiveness. This conclusion is shown more clearly in Fig. 
S(b). 

Augmentation values of Nusselt number from Fig. 4 and of 
heat exchanger effectiveness from Fig. 5(b) both at Gz of 1.5, 
are included in Table 1. By employing the values of the 
properties assembled elsewhere [2], the increases in power 
expenditure for propelling suspensions (computed from 
equation (5)) are also included in Table 1. It is seen that the 
Nusselt number and the heat exchanger effectiveness are 
enhanced significantly while the increase in the power 
expenditure is much lower. 

SUMMARY 

By a series of experiments, the existence of augmentation of 
heat transfer in laminar flow of particle suspensions has been 
demonstrated. The origin of this augmentation resides in the 
shear induced particle rotations and the concomitant chum- 
ing of the embedding fluid. Effects of particle diameter and 
volume fraction, tube dimensions, suspending fluid diffusi- 
vities and shear rate on heat transfer have been explored and 
found to be appreciable. The heat transfer data have been 
presented for the purpose of the thermal design of a heat 
exchanger. Relative to heat transfer in pure suspending liquid, 
Nusselt number is augmented by 82% for a 1OOpm dia. 
particle suspension of volume fraction of 4.64% at Graetz 
number of 15. The heat exchanger effectiveness isenhanced by 
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25”/ while the energy expenditure for propelling the suspen- 
sion is increased by only 8%. 
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RADIATION CONFIGURATION FACTORS FOR OBLIQUELY 
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NOMENCLATURE Subscripts 

center-to-center spacing of cylinders in the parallel 
orientation [m] ; 
configuration factor ; 
length of cylinder [m] ; 
cylinder radius [ml. 

max, pertaining to the maximum value of the con- 
figuration factor for a ninety degree orientation; 

0, parallel orientation, finite length cylinders; 
0 cc’ parallel orientation, infinitely long cylinders; 

cylinder rotation in the theta direction; 
cylinder rotation in the phi direction. 

Greek symbols Superscript 
f-&d% cylinder rotations defined in Fig. 1 [deg]. end-point rotation. 
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ANALYSE~O~ the diffuse radiative transport between cylinders 
have so far considered parallel-oriented tubes of either finite 
Cl-33 or infinite lengths [4]. Although general numerical 
codes have been developed which are capable of computing 
configuration factors for arbitrarily oriented cylinders [5,6], 
such computations have not yet been presented. The purpose 
of the present study is to develop closed-form approximate 
expressions for such configuration factors based upon the 
numerical results obtained by applying a general computer 
program [6] to this category of problems. The analytical 
expressions so obtained provide fairly accurate estimates for 
the configuration factors for this complex geometry. For most 
engineering design computations, the equations may be used 
directly. In addition, they provide a means of inexpensively 
investigat~g the effects of various design parameters in 
preliminary studies wherein the greater precision of the 
numerical computation would be reserved for the final 
calculations. 

NUMERICAL PROCEDURE 

In the CONSHAD program [6] the method of contour 
integration [7,8] is employed to transform the inner surface 
area integral into a line integral around its boundary. The 
formulation given in [7] was followed. The program is 
capable of computing confi~ation factors between planar, 
convex and polygonal surfaces. As such, we have modelled 
cylinders as polygons of the same surface area. For surfaces 
which see one another, contour integrals are performed 
around the boundaries of each polygon which comprises one 
of the “cylinders”. This type of integration is made for each of 
the surface area elements on the other polygonally-modelled 
cylinder. The surface area elements are taken to be triangular 
in shape so as to allow a strai~tfo~ard sub~~sion of 
polygonal surfaces. 

The number of sides and subdivisions of a side required to 
accurately predict cylindrical surface behavior was deter- 
mined from various tests including comparisons to results for 

finite and infinitely long parallel cylinders of diierent spac- 
ings [Z, 41. Polygons ranging from 6 to 16 sides were 
investigated and the number of triangular elements was 
varied from 144 to 576. It was found that by using a IZsided 
polygonal model in which the cylinder for the surface area 
integration was divided into 144 triangular subsurfaces, that 
agreement to the third significant figure was achieved for 
“infinite”, parallel cylinders (l~gth/radius = 600 and spac- 
ing/radius = 6). Excellent agreement was also achieved 
between the present computations and the figures presented 
in [2] for all lengths and spacings of hnite length cylinders. 

Computations for obliquely oriented cylinders of equal 
diameter were performed for the basic categories of orien- 
tations shown in Fig. 1. These orientations are defined by the 
indicated 0 and 4 rotations. Results for pure B-rotations 
(4=0’) were considered for two separate cases in which the 
cylinders were of the same length and either: (i) one of the 
cylinders was given a &rotation about its mid-point [Fig. 
l(b)], or (ii) one of the cylinders was given a e-rotation about 
itsend-lint [Fig. l(c)]. Results for pure ~-rotations (9 = O”) 
were computed for half-length to whole-length cylinders [Fig. 
l(d)]. Finally, combined 6 and &rotations were considered 
for half-to whole-length cylinders [Fig. l(e)] using the 
convention that the #-rotation was always performed first. 
For all cases, the configuration factor may be written 
functionally as: 

F = F(UR, C/R, 6, cP) (1) 

where L and R are the length and radius of a cylinder 
respectively, C is the center-to-center spacing of the cylinders 
in the parallel orientation, and f? and (p are the angular 
rotations of one cylinder with respect to the other. 

&ROTATIONS 

For pure @-rotations (4 = Oo)about themid-point ofoneof 
the cylinders, the configuration factors are symmetric with 
respect to B = 90”. Computations were therefore performed 
for 0 I 8 5 90”. Figure 2 shows a typical variation of the 

VIEWA 

Cd) 

FIG. 1. Cylinder orientations: (a) parallel orientation, (b) mid-point e-rotation, (c)end-point &rotation,(d) 
&rotation, (e) combined B and tfi rotation (&rotation first). 
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configuration factor as a function of 6 for four different 
spacings at a given length to radius ratio. The points 
computed by numerical integration are denoted by the 
symbols. The solid lines are the curves defined by the 
following equation which was found by trial and error to 
represent the 9 variation rather well [8] : 

The quantity F, is the configuration factor for the finite 
length cylinders in the parallel orientation [0 = 0”, Fig. l(a)]. 
This equation gives the exact result for 0 = 0 and 90”. The 
largest differences between the computed points and the 
analytical representation occur at smaller spacings where F, 
and F,+, differ the most. For the cases shown in Fig. 2 a 
maximum difference of 6.4% occurs at 9 = 45” for L/R = 37.7 
and C/R = 3. 

In order to achieve a purely analytical expression for F, 
simple approximate equations must be developed for F, and 
Fe=,,. Such an expression for F, has previously been 
developed by Glicksman [3] based upon physical arguments. 
This equation is also given in [9] and the full derivation 
appears in [IO]. The result for cylinders of equal diameter is 

x + 2)* + (2@/R)*] 

where 

A = (L/R)’ + (C’/R)’ - 1, (4) 

B = (L/R)’ - (C’,‘R)* + 1, (5) 

c’ = C - 0.85R. (6) 

Thequantity Fe, is theconfiguration factor for two infinitely 
long cylinders of parallel orientation. Using the cross-string 
method for cylinders of equal diameter, it may be written as 

141: 

A comparison between the configuration factors predicted by 
equation (3) and those determined by numerical integration 

show that an average agreement of 1.5% is attained for the 
range of cylinder lengths and spacings investigated: 0.1 < 
L/R 5 1000 and 3 I C/R 5 50. A maximum discrepancy of 
3.2% was found for L/R = 0.1 with C/R = 50. Consequently, 
Glicksman’s result was incorporated into the present 
approximation. 

In attempting to correlate Fez,,, several simple functional 
forms were initially considered [9]. However, these met with 
only limited success. In the present study, the function F,=,. 
= F(L/R, C/R, 0 = 90”, #J = 0”) was investigated more fully. 
Its behavior is shown in Fig. 3. (The characteristic of F,= 90 to 
achieve a maximum follows from the fact that as either the 
cylinder length becomes infinitesimally small or infinitely 
large the configuration factor must approach zero for all 
spacings.) A universal scaling of these similar looking curves 
was then sought. The maximum shape factor at a given 
spacing, (FB=Jmar, and the cylinder length at which 
(FB=gO)msi is achieved, (L/R),,,, were used as the scale factors. 
From the points plotted in Fig. 4 it is seen that the results of 
Fig. 3 are well correlated through these scaling factors. The 
points in Fig. 4 were then represented by the following 
probability distribution curve which appears as the solid line 
in the figure: 

where 

(L/R)/(L/R)~~~ < 1; m = -0.16, n = 1.61, D = - 1.86, 
(9) 

(L/R)/(L/R)~*~ > 1; m = -2.32, n = 0.889, u = 0.494. 
(IO) 

In completing the approximation, expressions for 
(FB=90)msx and (W),,, were developed from their variations 
shown by the points plotted in Fig 5. The solid lines are 
curves computed according to the following equations: 

(L/R),, = 2.42(C/R) - 2.24, (11) 

where, for the just-touching position (C/R = 2): 

(F,&,&,=, = 0.178, (13) 

(QJW,,,J,,, =z = 2.59. (14) 
Equations (11) and (12) represent the computed points to 
within 1.0% on the average. Combining equations (1 l)-( 14), 

0 I5 30 45 60 75 so 

THETA, 8 

Configuration factors for mid-point B-rotations [Fig. l(b)]. Data points: numerical 
curves : equation (2). 

FIG. 2. integration 
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an expression for (FBz90)mSr as a function (C/R) may be 
written as 

(FB+,)msx = 0.205[1.08(C/R) - 1)-o.9s. 05) 

Equations (S)-( 15) allow F,=,, to be computed directly. The 
agreement between such computations and those obtained 
from numerical integration is shown in Fig. 4. For scaled 
lengths greater than 0.1, F,=,, is predicted on the average to 
within 2.r%, with a maximum difference of 6.o”A. 

With the above specification for Fe=,, plus the result for F0 
given by equations (3 j(7), F, may be calculated from 
equation (2). Configuration factors computed according to 
the above chmzd form result are compared to the rest&s of 
numerical integration iu Fig. 2. The average discrepancy for 
the cases shown is less than 2.5% with the largest difference 
being 6.4%. The agreement usually improves as the cylinder 
length decreases or the spacing increases since the difference 

between F, and Fe,sO becomes smaller under these 
conditions and hence the accuracy of the results is less 
sensitive to errors in the assumed interpolating formula. 

For two cylinders of equal length and diameter wherein 
one is rotated about its end-point, the ~on~~urat~on factor is 
symmetric with respect to 3 = GO”. As aresult, the functional 
form used for mid-point rotations were initially chosen for 
this case too (with F,,,,, replacing F,=,,). This approach, 
however, was unsuccessful. Several other single-term 
expressions were also tried and finally the following 
equations for two separate angular domains were adopted: 

(16) 

V 
16 I I I ifflf I I Ilrrfll f 

IO0 Id 102 
LENGTH,L 

n . . 

FIG, 3. ~onfig~ation factors for B = 90”. Data points: numerical inte~&t~on ; curves: lines drawn through 
the points. 

FIG. 4. ~~fig~rat~on factors for @ = 90” in scaled variables. Data points: numerical inflation ; curve : 
equation (8). 
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FIG. 5. Relationship between (FO_BO)max and [L/R),,,; dependence of (L/R),,, on (C/R). Data points: 
numerkal integration; curves: equations (II) and (12). 

L/R 
-==TWS 
---- S-425 

THETA,0 

FIG. 6. Configuration factors for end-point B-rotations. Data points: numerical integration; curves: 
equations (16) and (17). 
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(17) 

The above equations are exact at 990 and 180”. The primed 
configuration factors (F) refer to end-point rotations, The 
unprimed refer to mid-point rotations: F,=,, is given by 
equation (8)and F, by equation (3). The quantities F’,=,, and 
F;=tso may be obtained from configuration factor algebra 
and are given by 

F&J = F,,,& (19) 

G=tso = FOIZLIR - FOIL, (20) 

In Fig. 6, values of F’B computed according to the above 
equations are compared to the results of numerical 
integration. Agreement to within 4.8% is obtained on the 
average with discrepancies near 11.0% occurring for short, 
closely spaced cylinders at angles of rotation between 20 
and 45”. 

(P-ROTATION 

Configuration factors for half to whole length cylinders 
were investigated for pure &rotations [0 = O”, see Fig. i(d)]. 
A typical variation is shown in Fig. 7. The results from 
numerical integration are given by the plotted points. The 
solid line was calculated from the following equation which is 
similar to equation (12) for pure @-rotations: 

(21) 

In the above, F, is the configuration factor for half- to whole- 
length cylinders in the parallel orientation which, by con- 
figuration factor algebra, equals the configuration factor for 
two whole length cylinders in the parallel orientation. 
Therefore F, is given by equation (3) in which L corresponds 
to the full-length cylinder. 

In determining FmzgO the same approach was taken as for 
F, = 9o. Figure 8 is a plot of F, = go as a function of spacing and 
cylinder length (analogous to Fig. 3 for F,=,,). Figure 9 
shows how the points in Fig. 8 collapse when F,,,, is scaled 
by (F,=,oL, and (L/ZR) is scaled by (~/2~)~~, its value 
co~esponding to (F+,,),,. This scaling is seen to be 

FIG. 7. Configuration factors for #-rotations. Data points: numerical integration; curves: equation (21). 

LENBTH ,L 
2R 

FIG. 8. Configuration factors for 4 = 90”. Data points: numerical integration ; curves: lines drawn through 
the points. 
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appropriate for scaled lengths greater than 0.4. The solid line average discrepancy is 4.4%. 
in Fig. 9 represents values computed according to the The variations of (L/2R),,, and (FB=90)msX are shown in 
following probability distribution function : Fig. 10. The solid lines are the variations predicted by the 

F,=,, = [gTexp[i/ln [e-J/] 
following equations : 

v, =90hnax tL/ 2RL = 3.1 [(C/R) - 11” 94 + 2.6, (25) 

(22) (F+=so)mar (L/2R),,, 

> 

-0.95 

where (F,+Y,,)mazlc:s;, = (L/‘~%&!R=I 
(26) 

(L/2R)J(Lj2R~~~~ < 1; p = - 0.0778. q = 1.93, (I’ = - 2.08, where, for the just-touching position (CiR = 1): 
(23) (Rd. =Po)max ( c+. = f = 0.0257, 

(Lj2R)l(L~2R~~~ > 1; p = 0.0579, q = 1.57, d = - 3.46. 
(241 

(L!ZR),,/,,+z, = 2.6. 

(27) 

(28) 

The agreement is seen to be excellent for scaled lengths 
Combining equations (25~(28), an expression for (F+=90)MX 

greater than 0.4. At shorter lengths, good agreement is 
as a function of (C/R) may be written : 

achieved only for spacings greater than 10. Overall, the (F1=l)O)mar = 0.0257{ l.i9[(C/R) - 1]“.94 + 1.0) -“.95. (29) 

0.6 

3 -90 

ql=9dm~x 0.4 

0.2- 

c 

FIG 9. Configuration factors for 4 = 90” in scaled variables. Data points: numerical integration; curve: 
equation (22). 

100 

60 

(UZRlmax 
60 

FIG. 10. Relationship~tween (F,=,,),,,and (L/ZR),,,, . dependence of (L/2&,,, upon (C/R). Data points : 
numerical integration; curves: equations (25) and (26). 



Shorter Comm~i~tions 735 

In Fig. 7, the values of F, computed using the above Combining equations (30)-(34) yield an expression for 
equations are seen to compare favorably with the results of F(I#, 8) in terms of previously defined functions: 
numerical integration. The average discrepancy for the cases 
shown is about 8% with the largest being 21%. Generally, the 
agreement is better at closer spacings. 

The above eauation is intended to be used onlv when 0 and cb 

COMBINED 8 AND 4 ROTATIONS 
both lie bet&en 0 and 90” since F@, &?) is generally ndt 

Arbitrary orientations of the two cylinders may be pre- 
symmetric with respect to either 0 = 90” or 4 = 90”. In Table 

scribed by specifying the distance between the cylinders plus 
1 a comparison is given between the values predicted by 

the two angular rotations @ and 4. Again, the convention 
equation (35) and the results of numerical integration. For the 

adopted in this study was to perform the &rotation first [see 
cases computed, the maximum discrepancy was about 30%. 

Fig. l(e)]. Under these combined rotations, the configuration 
The largest errors occur when either or both of the angles is 

factors for whole-length to half-length cylinders were in- 
near 45”. The maims errors occur at angular combinations 

vestigated. An approximate expression for determining 
of 0 and 90” since the interpolating function was formulated 

F(#, 8) was developed [9] by defining a function which would 
to be accurate for these orientations. 

satisfy the limiting conditions for various 8 and d, com- 
binations of 0 and 90”. The postulated function is 

FM, 6) _= ~~~6~~~# (30) 
CONCLUSION 

F(O, 0) 
Numerical computations of configuration factors for ob- 

where 
liquely oriented cylinders have been presented for a variety of 
cylinder spacings, lengths and angular orien~tions. Ctosed- 

F(O,O) = F,, equation (3) (31) form expressions have been developed which, in most cases, 
predict the configuration factors quite accurately. For each of 

WJQ 0) = F,=,, 

t 

the two distinct types of 90” orientations it was found that the 
equation (21) 

(32) configuration factors for a wide range of different spacings 

W,90) = F,=,, (33) 
and lengths could be scaled to yield a single curve under most 
condi&ns. In addition, the cylkkr lengths which yield a 

F(& 0) = F+, equation (20) (34) maximum configuration factor for a given spacing were also 

Table 1. Configuration factors for whole to half-length cylinders for combined 0 and &rotations 

loo x Fw,,-,L.,w 
Numerical equation 

100 x FM,-o,,,, 
Numerical equation 

CIR 4 e integration (35) W C/R cb t? integration (35) 

18.85 3 0 0 
0 90 

5.30 5.32 37.7 3 0 
2.99 2.96 0 9: 
0.89 0.89 90 0 
1.66 1.83 45 0 
1.70 1.79 45 15 
1.81 2.10 45 30 

5.46 5.41 
1.88 1.92 
0.75 0.71 
1.33 1.27 
1.33 1.42 
1.35 1.57 
1.42 1.70 
1.52 1.82 
1.67 1.90 
1.88 1.92 
2.45 2.61 
2.07 2.23 
1.71 1.93 
1.21 1.55 
1.09 1.46 
0.88 1.17 
1.04 1.46 
1.25 1.68 

1.57 1.56 
1.14 1.14 
0.31 0.30 
0.60 0.60 
0.62 0.71 

90 0 
45 0 
45 15 
45 30 
45 4s 
45 60 
45 75 

2.24 2.42 45 45 
2.25 2.70 45 60 
2.57 2.89 

45 90 2.99 2.96 
0 45 3.59 3.51 

2.96 3.06 
2.42 2.70 
1.68 2.23 
1.49 2.12 
1.13 1.62 
2.99 208 
1.84 2.52 

45 75 
45 90 

0 45 
:; 45 45 

60 45 

;: 45 30 
90 45 
90 60 

1.36 37.7 9 0 0 

15 45 
30 45 
60 4s 

45 
;; 30 
90 45 
90 60 

18.85 9 0 0 
0 90 

90 0 
45 0 
45 15 
45 30 

45 
4: 60 
45 75 
45 90 

0 45 
15 45 
30 45 
60 45 
75 45 
90 30 
90 60 

1.36 
1.33 
0.23 
0.56 

1.32 0 90 
0.29 90 0 
0.56 
0.60 
0.17 
0.96 
1.14 
1.27 
1.32 

45 0 
45 15 
45 30 
45 45 
45 60 
45 75 
45 90 

0 45 
15 45 
30 45 
60 45 

45 
;i 30 
90 60 

0.59 
0.68 0.68 0.83 

0.77 0.95 
0.87 1.05 
0.99 1.12 
1.14 1.15 

0.80 
0.95 
1.12 
1.33 
1.34 
1.13 
0.95 

t :E 1.29 1.25 
1.08 1.11 
0.90 0.99 
0.66 0.83 
0.60 0.79 
0.45 0.59 
0.74 0.96 

1.06 
0.69 0.90 
0.62 0.86 
0.42 0.62 

1.07 
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determined for these orientations. Results for other cyIinder 4. H, C. Hottet and A. F. Sarofim, ~~~~~~ve Trans&, p. 35. 
orientations were presented for several conditions. The McGraw-Hill, New York (19673. 
accuracy of the approximate expressions was found to be 5. R. S. Dummer and W. T. Breckenridge, Jr., Radiation 
quite good for both pure 0 and pure # rotations. Combined 
rotations were not represented as accurately. 
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NOMENCLATURE 

CnRm(lj, coeflicient used in equations (4) and (5); 
H, = hr.&, Biot number ; 
h, heat transfer coeI&ient for external ambient; 

ks heat transfer coe%cient for flow inside the tube ; 
k. thermal conductivity of the fluid: 

f-f%, 
Pr, 

::, 
r,, 
Re, 
To, T,, 
Urn, 
2. 

2, 

= &/4; 
= %&8,/k, Nussett number ; 
= v/a, Prandtt number ; 
= f/r,, dimensionless radial coordinate; 
dimensional radial caordinate; 
inside radius of the tube; 
= 2r, U,,,/v, Reynolds number; 
inlet and ambient temperatures respectively ; 
mean velocity ; 
dimensionless axial coordinate, Zz’/r,RePr; 
axial coordinate. 

Greek symbols 
B, =(T- T,)/(T, - T,), dimensionless tempera- 

ture; 3 
4s eigenvatue. 

THE GRAETZ problem for taminar flow inside a circular tube 
subjected to the boundary condition of the third kind at the 
tube wall is encountered in numerous engineering appli- 
cations and has been studied by few investigators [I, 23. For 
the analysis of such problems, the local Nusselt number is a 

quantity ofpracrical interest and its determination requires a 
knowledge af the eigenvatues and the eigenfunctions far the 
problem. Hsu [2] solved such an eigenvalue problem numeri- 
cally and also presented some asymptotic expressions for the 
eigenvalues and the coefficients. Rere we present big& 
accurate analytic expressions for the de~rfflina~~on of the 
eigenvalues and the coeftieients that are applicable over the 
entire range of the Biot number from zero to in&&y. 

ANALYSIS 

We consider thermally developing taminar flow inside a 
circular tube with fully developed velocity profile and sub- 
jected to the boundary condition of the third kind at the tube 
watt. For a constant property, incompressible fluid with no 
heat generation and neglecting theviscous energy dissipation, 
the mathematical formulation of this heat transfer problem is 
given in the dimensionless form as 

wo, 21 -=o, z>o 
dr 

fIbI 

a@(l,z) -__ + HB(l,z) = 0, z > 0 
ar 

(lc) 

B(r,O)= 1, Osr Il. (Id) 

The solution of this heat transfer problem is given by 


