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against the particle volume fraction ¢ for Gz of 10 and 15
increases sharply up to volume fraction of 5% beyond which
the increase is very slow. For a Gz of 15 and a suspension of
volume fraction of 5% the overall heat transfer coefficient is
1.6 times that for the aqueous NaCl.

The ratio of Nusselt number of flowing suspensions, Nu, to
that of aqueous NaCl, Nu, is plotted against the particle
volume fraction ¢ in Fig. 4. It increases linearly with ¢ sharply
up to 5% beyond which the increase is very slow. Number of
heat transfer units, NTU, is plotted against ¢ with Gz as
parameter in Fig. 5(a). At a given Gz, greater particle volume
fractions yield larger values of NTU which means, as is
apparent in equation (6), larger values of heat exchanger
effectiveness. This conclusion is shown more clearly in Fig.
5(b).

Augmentation values of Nusselt number from Fig. 4 and of
heat exchanger effectiveness from Fig. 5(b) both at Gz of 15,
are included in Table 1. By employing the values of the
properties assembled elsewhere [2], the increases in power
expenditure for propelling suspensions (computed from
equation (5)) are also included in Table 1. It is seen that the
Nusselt number and the heat exchanger effectiveness are
enhanced significantly while the increase in the power
expenditure is much lower.

SUMMARY

By a series of experiments, the existence of augmentation of
heat transfer in laminar flow of particle suspensions has been
demonstrated. The origin of this augmentation resides in the
shear induced particle rotations and the concomitant churn-
ing of the embedding fluid. Effects of particle diameter and
volume fraction, tube dimensions, suspending fluid diffusi-
vities and shear rate on heat transfer have been explored and
found to be appreciable. The heat transfer data have been
presented for the purpose of the thermal design of a heat
exchanger. Relative to heat transfer in pure suspending liquid,
Nusselt number is augmented by 829 for a 100 um dia.
particle suspension of volume fraction of 4.64% at Graetz
number of 15. The heat exchanger effectiveness is enhanced by
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25%, while the energy expenditure for propelling the suspen-
sion is increased by only 8%

REFERENCES

1. A S.Ahuja, Heat transport in laminar flow of erythrocyte
suspensions, J. appl. Physiol. 39, 86-92 (1975).

2. A. S. Ahuja, Augmentation of heat transport in laminar
flow of polystyrene suspensions. 1. Experiments and
results, J. appl. Phys. 46, 3408-3416 (1975).

3. A. S. Ahuja, Augmentation of heat transport in laminar
flow of polystyrene suspensions. 11. Analysis of the data,
J. appl. Phys. 46, 34173425 (1975).

4. A.S. Ahuja, Augmentation of heat and mass transport in
flowing particle suspensions: A dimensional analysis. J.
appl. Phys. 47, 775-777 (1976).

5. A. S. Ahuja, W. R. Hendee and P. L. Carson, Transport
phenomena in laminar flow of blood, Phys. Med. Biol. 23,
928-936 (1978).

6. A. S. Ahuja, Augmentation of heat and mass transfer in
laminar flow of suspensions: A correlation of data, J.
appl. Phys. 51, 791-795 (1980).

7. A.S. Ahuja and W. R. Hendee, Thermal design of a heat
exchanger for heating or cooling blood, Phys. Med. Biol.
23, 937-951 (1978).

8. A. E. Bergles, Survey and evaluation of techniques to
augment convective heat and mass transfer, in Progress in
Heat and Mass Transfer (Edited by U. Grigull and E.
Hahne}, Vol. 1, pp. 331424, Pergamon Press, New York
(1969).

9. A. E. Bergles and R. L. Webb (eds.), Augmentation of
Convective Heat and Mass Transfer. ASME, New York
(1970).

10. A. E. Bergles, Recent developments in convective heat-
transfer augmentation, Appl. Mech. Rev. 26, 675 (1973).

11. A. 8. Ahuja, Measurement of thermal conductivity of
(neutrally and nonneutrally buoyant) stationary suspen-
sions by the unsteady-state method, J. appl. Phys. 46,
747-755 (1975).

12. E. R. G. Eckert and R. M. Drake, Jr., Heat and Mass
Transfer, 2nd edn. McGraw-Hill, New York (1959).

0017-9310/82/050728--0% $03.00/0
© 1982 Pergamon Press Lid.
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NOMENCLATURE
C, center-to-center spacing of cylinders in the parallel
orientation [m];
F, configuration factor;
L, length of cylinder {m];
R, cylinder radius [m].

Greek symbois
0,4, cylinder rotations defined in Fig. 1 [deg].

Subscripts

max, pertaining to the maximum value of the con-

figuration factor for a ninety degree orientation;

0, parallel orientation, finite length cylinders;

0., paraliel orientation, infinitely long cylinders;

g, cylinder rotation in the theta direction;

b, cylinder rotation in the phi direction.
Superscript

', end-point rotation.
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INTRODUCTION

ANALYSsEs of the diffuse radiative transport between cylinders
have so far considered parallel-oriented tubes of either finite
[1-3] or infinite lengths [4]. Although general numerical
codes have been developed which are capable of computing
configuration factors for arbitrarily oriented cylinders {5, 6],
such computations have not yet been presented. The purpose
of the present study is to develop closed-form approximate
expressions for such configuration factors based upon the
numerical results obtained by applying a general computer
program [6] to this category of problems. The analytical
expressions so obtained provide fairly accurate estimates for
the configuration factors for this complex geometry. For most
engineering design computations, the equations may be used
directly. In addition, they provide a means of inexpensively
investigating the effects of various design parameters in
preliminary studies wherein the greater precision of the
numerical computation would be reserved for the final
calculations.

NUMERICAL PROCEDURE

In the CONSHAD program [6] the method of contour
integration [7, 8] is employed to transform the inner surface
area integral into a line integral around its boundary. The
formulation given in [7] was followed. The program is
capable of computing configuration factors between planar,
convex and polygonal surfaces. As such, we have modelled
cylinders as polygons of the same surface area. For surfaces
which see one another, contour integrals are performed
around the boundaries of each polygon which comprises one
of the “cylinders”. This type of integration is made for each of
the surface area elements on the other polygonally-modelled
cylinder. The surface area elements are taken to be triangular
in shape so as to allow a straightforward subdivision of
polygonal surfaces.

The number of sides and subdivisions of a side required to
accurately predict cylindrical surface behavior was deter-
mined from various tests including comparisons to results for
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finite and infinitely long parallel cylinders of different spac-
ings [2, 4]. Polygons ranging from 6 to 16 sides were
investigated and the number of triangular elements was
varied from 144 to 576. It was found that by using a 12-sided
polygonal model in which the cylinder for the surface area
integration was divided into 144 triangular subsurfaces, that
agreement to the third significant figure was achieved for
“infinite”, paralle! cylinders (length/radius = 600 and spac-
ing/radius = 6). Excellent agreement was also achieved
between the present computations and the figures presented
in [2] for all lengths and spacings of finite length cylinders.

Computations for obliquely oriented cylinders of equal
diameter were performed for the basic categories of orien-
tations shown in Fig. 1. These orientations are defined by the
indicated 8 and ¢ rotations. Results for pure §-rotations
(¢=0°) were considered for two separate cases in which the
cylinders were of the same length and either: (i) one of the
cylinders was given a @-rotation about its mid-point [Fig.
1{b)], or (ii) one of the cylinders was given a é-rotation about
itsend-point [Fig. 1{c}]. Results for pure $-rotations (# = 0°)
were computed for half-length to whole-length cylinders [Fig.
1(d)]. Finally, combined 8 and ¢-rotations were considered
for half-to whole-length cylinders [Fig. 1{e)] using the
convention that the ¢-rotation was always performed first.
For all cases, the configuration factor may be written
functionally as:

F=F(L/R,C/R,8,¢) (1)

where L and R are the length and radius of a cylinder
respectively, C is the center-to-center spacing of the cylinders
in the parallel orientation, and # and ¢ are the angular
rotations of one cylinder with respect to the other.

9-ROTATIONS
Mid-point rotation—Fig. 1(b)

For pure f-rotations (¢ = 0°)about the mid-point of one of
the cylinders, the configuration factors are symmetric with
respect to 8 = 90°. Computations were therefore performed
for 0 < 8 < 90°. Figure 2 shows a typical variation of the
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F1G. 1. Cylinder orientations: (a} parallel orientation, (b) mid-point f-rotation, (c) end-point #-rotation, (d)
¢-rotation, () combined # and ¢ rotation {¢-rotation first).
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configuration factor as a function of 8 for four different
spacings at a given length to radius ratio. The points
computed by numerical integration are denoted by the
symbols. The solid lines are the curves defined by the
following equation which was found by trial and error to
represent the 6 variation rather well [8]:

F F.__ sin §
= (—;‘”) : @
0 [4]

The quantity F, is the configuration factor for the finite
length cylinders in the parallel orientation [§ = 0°, Fig. 1(a)].
This equation gives the exact result for # = 0 and 90°. The
largest differences between the computed points and the
analytical representation occur at smaller spacings where F,
and Fy_gq differ the most. For the cases shown in Fig. 2a
maximum difference of 6.4% occursat 8 == 45°for L/R = 371.7
and C/R = 3.

In order to achieve a purely analytical expression for F,
simple approximate equations must be developed for F, and
Fg.90- Such an expression for F, has previously been
developed by Glicksman [ 3] based upon physical arguments.
This equation is also given in [9] and the full derivation
appears in [10]. The result for cylinders of equal diameter is

_&_l_l{m By __ 1
F, 2 <A> AL/R)
X [J[(4 + 2 + QC/RY]
-1BR (RN _” J}
cos (AC’)} + Bsin (C’ 2A 3)
where
A = (L/R)? + (C'/R)* ~ 1, )
B ={L/Ry? — (C'/R}* + 1, (5)
¢’ =C—085R. {6

The quantity F,, is the configuration factor for two inﬁnitgly
long cylinders of parallel orientation. Using the cross-string
method for cylinders of equal diameter, it may be written as

[4]:

_i i 2R ‘E—Z’ ]1{2_3}
Fax—n{sm <F>+[(2R) 1 RE M

A comparison between the configuration factors predicted by
equation (3) and those determined by numerical integration
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show that an average agreement of 1.5% is attained for the
range of cylinder lengths and spacings investigated: 0.1 <
L/R <1000and 3 < C/R < 50. A maximum discrepancy of
3.2% was found for L/R = 0.1 with C/R = 50. Consequently,
Glicksman’s result was incorporated into the present
approximation.

In attempting to correlate Fy_ o4, several simple functional
forms were initially considered [9]. However, these met with
only limited success. In the present study, the function Fy_4q
= F(L/R, C/R,8 = 90°, ¢ = 0°) was investigated more fully.
Its behavior is shown in Fig. 3. (The characteristic of Fy_ 44 to
achieve a maximum follows from the fact that as either the
cylinder length becomes infinitesimally small or infinitely
large the configuration factor must approach zero for all
spacings.) A universal scaling of these similar looking curves
was then sought. The maximum shape factor at a given
spacing, (Fg.o0)ms» and the cylinder length at which
(F o= 90)max 1§ achieved, (L/R )., Were used as the scale factors.
From the points plotted in Fig. 4 it is seen that the results of
Fig. 3 are well correlated through these scaling factors. The
points in Fig. 4 were then represented by the Iollowing
probability distribution curve which appears as the solid line
in the figure:

Foooo _ ( (L/R) )"‘ ex [1 m( (L/R) )] ®)
(Fﬂ=90)max (L/R)max p (U (L/R)rnax
where
(L/RVIL/R)pp < 1;m= —0.16,n = 161, o = —1.86,
©
(L/RY(L/R)s > 13m = —2.32,n = 0.889, ¢ = 0.494.
{10)

In completing the approximation, expressions for
(F = 90)max and (L/R),,, were developed from their variations
shown by the points plotted in Fig. 5. The solid lines are
curves computed according to the following equations:

(L/R) e = 242(C/R) — 2.24, (11)
F g 00)max LRy  \7°%*
(Fomsodmas ( (L/R) ) )
(Fa:QO)mnx’(’fR:Z (L/R)mnxlC/R=2
where, for the just-touching position (C/R = 2);
(F!):QO)max!CfR:z = 0.178, (13)
(L/R)max{rmq = 2.59, (14)

Equations (11) and (12) represent the computed points to
within 1.0% on the average. Combining equations (11)-(14),

0400

0.080}
Fg
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\
0040
0020
] s 30
THETA, &

FiG. 2. Configuration factors for mid-point @-rotations [Fig. 1(b)]. Data points: numerical integration ;
curves: equation (2).
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an expression for (Fy.go)msx @S @ function (C/R) may be
written as

(Fg=90)mee = 0.205[108(C/R) — 117095, (15)

Equations (8)-(15)allow F,_,, to be computed directly. The
agreement between such computations and those obtained
from numerical integration is shown in Fig. 4. For scaled
lengths greater than 0.1, F,_, is predicted on the average to
within 2.7% with a maximum difference of 6.0%,.

With the above specification for F,. 4, plus theresultfor Fy
given by equations (3(7), F, may be calculated from
equation (2). Configuration factors computed according to
the above closed form result are compared to the results of
numerical integration in Fig. 2. The average discrepancy for
the cases shown is less than 2.5% with the largest difference
being 6.4%,. The agreement usually improves as the cylinder
length decreases or the spacing increases since the difference
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between F, and F,_q, becomes smaller under these
conditions and hence the accuracy of the results is less
sensitive to errors in the assumed interpolating formula.

End-point rotation—Fig. 1{c)

For two cylinders of equal length and diameter wherein
one is rotated about its end-point, the configuration factor is
symmetric with respect to & = 180°. As a result, the functional
form used for mid-point rotations were initially chosen for
this case too (with Fy. g4, replacing F,_,,). This approach,
however, was unsuccessful. Several other single-term
expressions were also tried and finally the following
equations for two separate angular domains were adopted:

4 ¢ 8/90
0° <8 <90°, —g—ae.- (Ef;”)

16
=UF, {16)

LR

HREERR

1 |ilHH{

SPACING.CR
Oz $H
03 22
as O

1 lllml

L
182
100 tol 102
LENGTH,%

F1c. 3. Configuration factors for § = 90°. Data points: numerical infegration ; curves: lines drawn through
the points.
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Fic. 4. Configuration factors for # = 90° in scaled variables. Data points: numerical integration ; curve:
equation (8).
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F1G. 5. Relationship between (Fy=go)max and (L/R),,,; dependence of (L/R),,, on (C/R). Data points:
numerical integration ; curves: equations (11) and (12).
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Fic. 6. Configuration factors for end-point 6-rotations. Data points: numerical integration; curves:
equations {16) and (17).
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90° < 8 < 180°, {an

g (€]
Fy _( o=1so)f
a=90  \Fo=90

9 — 90\ 2

The above equations are exact at 0, 90 and 180°. The primed
configuration factors (F') refer to end-point rotations. The
unprimed refer to mid-point rotations: Fy_gq is given by
equation (8)and F, by equation (3). The quantities Fy_qq and
F. 180 may be obtained from configuration factor algebra
and are given by

(18)

F;;=9o = Fs=90/2 (19}

F'9=ISO=FO¥2L/R'—FO‘L/R (20

In Fig, 6, values of F, computed according to the above
equations are compared to the results of numerical
integration. Agreement to within 4.8% is obtained on the
average with discrepancies near 11.0% occurring for short,
closely spaced cylinders at angles of rotation between 20
and 45°.
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$-ROTATION

Configuration factors for half to whole length cylinders
were investigated for pure ¢-rotations [# = 0°, see Fig. 1(d)].
A typical variation is shown in Fig. 7. The results from
numerical integration are given by the plotted points. The
solid line was calculated from the following equation which is
similar to equation (12} for pure f-rotations:

F‘?_ F¢=90 sin ¢
Fo \ Fo ]

In the above, F, is the configuration factor for half- to whole-
length cylinders in the parallel orientation which, by con-
figuration factor algebra, equals the configuration factor for
two whole length cylinders in the parallel orientation.
Therefore Fg is given by equation (3) in which L corresponds
to the full-iength cylinder.

In determining F, _,, the same approach was taken as for
F4_ o0 Figure 8 is a plot of F,, _g, as a function of spacing and
cylinder length (analogous to Fig. 3 for F,_g,). Figure 9
shows how the points in Fig. 8 collapse when F,_y, is scaled
by (Fy_o0)ma. and {L/2R) is scaled by (L/2R),,,, its value
corresponding t0 (F _go)ms This scaling is seen to be

@

FiG. 7. Configuration factors for ¢-rotations. Data points: numerical integration ; curves: equation (21).
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appropriate for scaled lengths greater than 0.4. The solid line
in Fig. 9 represents values computed according to the
following probability distribution function:

Fyeso  _ ( (L/2R) ) exp [ L [ (L/2R) ]H
(Faﬁ £ 90)mzx (L/R)max o (L/ZR )max
where
(L/2RY(L/2R) e < 13p = —00778,4 = 193, = —2.08,
{23)
(LP2RY(L/2R)0y > 1:p = 00579, g =1.57,0 = —~346.
(24)

The agreement is seen to be excellent for scaled lengths
greater than 04. At shorter lengths, good agreement is
achieved only for spacings greater than 10, Overall, the
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average discrepancy is 4.4%.

The variations of (L/2R)yay a0d (Fy-90)max are shown in
Fig. 10. The solid lines are the variations predicted by the
following equations:

(L 2R)ay = 31 [(C/R) = 17094 4 2.6, (25)
(F 490 max _ ( (L/2R)man )‘o'” 26)
(Fd: :QO)max!C«’R = (L/ZR)max‘Cf'R= 1
where, for the just-touching position (C/R=1):
(F ¢=90)max{(‘:R=‘»l = 0.0257, 27
(L/2R)mas | cin=1 = 26. (28)

Combining equations (25)-(28), an expression for (F ; _s¢)max
as a function of (C/R) may be written:

(Fy - 00)max = 0.0257{11IO[(C/R) — 1]°%* + 1.0} =095 (29)

1 T T
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Fi6. 9. Configuration factors for ¢ = 90° in scaled variables. Data points: numerical integration ; curve:
equation (22).
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In Fig. 7, the values of F, computed using the above
equations are seen to compare favorably with the results of
numerical integration. The average discrepancy for the cases
shown is about 8% with the largest being 21%,. Generally, the
agreement is better at closer spacings.

COMBINED § AND ¢ ROTATIONS

Arbitrary orientations of the two cylinders may be pre-
scribed by specifying the distance between the cylinders plus
the two angular rotations & and ¢. Again, the convention
adopted in this study was to perform the ¢-rotation first see
Fig. 1{e}]. Under these combined rotations, the configuration
factors for whole-length to half-length cylinders were in-
vestigated. An approximate expression for determining
F(¢, 6) was developed [9] by defining a function which would
satisfy the limiting conditions for various 6 and ¢ com-
binations of 0 and 90°, The postulated function is

sinf sing
Fg,6) (F(é, 90)) (F(90, 9)) (30)

F(0,0) \ F(¢,0) F(©,0)
where
F(0,0) = F, equation (3) (31)
F00,8) = Fy =50 iequation (21 ¢2)
F(¢,90) = F¢=9o (33)
F{¢,0) = F,, equation (20} (34)
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Combining equations (30}—(34) yield an expression for
F(¢, 8) in terms of previously defined functions;

F(¢,6) _{Fo=s0 )'i" ¢ (F¢=9o )'i" ¢
F, Fa Fo '

The above equation is intended to be used only when 6 and ¢
both lie between 0 and 90° since F{¢, ) is generally not
symmetric with respect to either & = 90° or ¢ = 90°. In Table
1 a comparison is given between the values predicted by
equation (35)and the results of numerical integration. For the
cases computed, the maximum discrepancy was about 30%,.
The largest errors occur when either or both of the angles is
near 45°. The minimum errors occur at angular combinations
of 0 and 90° since the interpolating function was formulated
to be accurate for these orientations.

(3s)

CONCLUSION

Numerical computations of configuration factors for ob-
liquely oriented cylinders have been presented for a variety of
cylinder spacings, lengths and angular orientations. Closed-
form expressions have been developed which, in most cases,
predict the configuration factors quite accurately. For each of
the two distinct types of 90° orientations it was found that the
configuration factors for a wide range of different spacings
and lengths could be scaled to yield a single curve under most
condithons. In addition, the cylinder lengths which yield a
maximum configuration factor for a given spacing were also

Table 1. Configuration factors for whole to half-length cylinders for combined # and ¢-rotations

100 x Fipim-izm

100 % Fipp-(12R)

Numerical  equation Numerical  equation
L/R C/R ¢ #  integration 3% L/R C/R ¢ 8§  integration (35)
18.85 3 0 0 5.30 532 3.7 3 0 0 546 541
0 90 299 296 ¢ 90 1.88 192
90 0 0.89 0.89 90 0 0.75 0.71
45 0 1.66 1.83 45 0 1.33 1.27
45 15 1.70 1.79 45 15 1.33 142
45 30 1.81 2.10 45 30 1.35 1.57
45 45 224 242 45 45 142 1.70
45 60 2.25 270 45 60 152 1.82
45 75 257 2.89 45 75 1.67 1.90
45 90 299 296 45 90 1.88 192
0 45 3.59 351 o 45 245 261
15 45 296 3.06 15 45 207 223
30 45 242 2.70 30 45 171 193
66 45 1.68 223 60 45 121 1.55
75 45 1.49 2.12 75 45 1.09 1.46
90 30 1.13 1.62 90 30 0.88 1.17
90 45 299 2.08 90 45 1.04 1.46
90 60 1.84 252 90 60 125 1.68
18.85 9 0 0 1.36 1.36 317 9 0 0 1.57 1.56
0 90 1.33 1.32 0 90 1.14 1.14
90 0 0.23 029 90 0 0.31 0.30
45 0 0.56 0.56 45 0 0.60 0.60
45 15 0.59 0.60 45 15 0.62 0.71
45 30 0.68 0.77 45 30 0.68 0.83
45 45 0.80 0.96 45 45 0.77 0.95
45 60 095 1.14 45 60 0.87 1.05
45 75 L12 127 45 75 099 112
45 90 1.33 1.32 45 90 1.14 1.15
0 45 1.34 1.34 0 45 1.29 1.25
15 45 1.13 1.18 15 45 1.08 1.1
30 45 095 1.06 30 45 050 0.99
60 45 0.69 090 60 45 0.66 0.83
75 45 0.62 0.86 75 45 0.60 0.79
80 30 042 0.62 90 30 045 0.59
90 60 0.80 1.07 90 60 0.74 0.96
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determined for these orientations, Results for other cylinder
orientations were presented for several conditions. The
accuracy of the approximate expressions was found to be
quite good for both pure # and pure ¢ rotations. Combined
rotations were not represented as accurately.
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ANALYTIC SOLUTION FOR THE EIGENVALUES
AND COEFFICIENTS OF THE GRAETZ PROBLEM
WITH THIRD KIND BOUNDARY CONDITION
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Mechanical and Aerospace Engineering Department,
North Carolina State University, Raleigh, NC 27650, US.A,
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NOMENCLATURE
C L R.(1), coefficient used in equations {4} and (5);
H, = hr/k, Biot number;

h, heat transfer coefficient for externgl ambient;
ke, heat transfer coefficient for flow inside the tube;
k, thermal conductivity of the fluid;

X, = i.,jé»;

Nu = 2r,h /k, Nusselt number;

Pr = v/a, Prandil number;

r, = r'/r,, dimensionless radial coordinate;
r, dimensional radial coordinate;

T inside radius of the tube;

Re, = 2r, U,/v, Reynolds number;

Ty, T, inlet and ambient temperatures respectively ;
Um, mean velocity;

z, dimensionless axial coordinate, 2z'/r, RePr;
z, axial coordinate.

Greek symbols

8, ={T-T_ W(T,~T,) dimensionless tempera-
ture;
Ao eigenvalue,
INTRODUCTION

THE GRAETZ problem for laminar flow inside a circular tube
subjected to the boundary condition of the third kind at the
tube wall is encountered in numerous engineering appli-
cations and has been studied by few investigators [1, 2]. For
the analysis of such problems, the local Nusselt numberisa

quantity of practical interest and its determination requires a
knowledge of the eigenvalues and the eigenfunctions for the
problem. Hsu [ 2] solved such an eigenvalue problem numeri-
cally and also presented some asymptotic expressions for the
cigenvalues and the coefficients. Here we present highly
accurate analytic expressions for the determination of the
cigenvalues and the coefficients that are applicable over the
entire range of the Biot number from zero to infinity.

ANALYSIS

We consider thermally developing laminar flow inside a
circular tube with fully developed velocity profile and sub-
jected to the boundary condition of the third kind at the tube
wall. For a constant property, incompressible fluid with no
heat generation and neglecting the viscous energy dissipation,
the mathematical formulation of this heat transfer problem is
given in the dimensionless form as

J8(r, 18/ a8
s:rﬁ:__(h), O<rsl z>0(la)
bz ror\ or
26(0, 2}
or

A1 ~rY

=0, z>0 {1b)

+ HO(1,z)=0, z>0

80(1 z) (1c)
r

A(r, 0} =1,
The solution of this heat transfer problem is given by

0<rx<l. (1d)

B(r,z) = i C R {rje" "2 @)



